your market intelligence analyst
Search Results
Edit Save
1,011 results
Although intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been the gold standard for nonsurgical management of non–muscle-invasive bladder cancer, a considerable number of patients exhibit resistance to the adjuvant treatment with unexplained mechanisms.
Next-generation sequencing of solid tumors has revealed variable signatures of immunogenicity across tumors, but underlying molecular characteristics driving such variation are not fully understood. Although expression of endogenous retrovirus (ERV)-containing transcripts can provide a source of tumor-specific neoantigen in some cancer models, associations between ERV levels and immunogenicity across different types of metastatic cancer are not well established. We performed bioinformatics analysis of genomic, transcriptomic, and clinical data across an integrated cohort of 199 patients with metastatic breast, colorectal, and pancreatic ductal adenocarcinoma tumors. Within each cancer type, we identified a subgroup of viral mimicry tumors i.
Tyrosine kinase inhibitors have revolutionized the world of cancer treatment in recent years, profoundly improving survival of patients with chronic myeloid leukemia (CML) and beyond. However, off-target toxicities of these inhibitors are well-described, and resistance has become a paramount concern. Novel allosteric inhibitors of the Abelson (ABL) family of tyrosine kinases, including GNF-2, GNF-5, and ABL-001, are equipped to overcome these issues. Several contemporary studies have demonstrated their potential efficacy in three key areas: primary hematologic and solid malignancies, metastasis, and combination with other small molecules. Further, ongoing clinical trials are investigating the efficacy of ABL-001 for the treatment of CML and.
Despite significant progress in understanding the genetic landscape of T-cell acute lymphoblastic leukemia (T-ALL), the discovery of novel therapeutic targets has been difficult. Our results demonstrate that the levels of PIM1 protein kinase is elevated in early T-cell precursor ALL (ETP-ALL) but not in mature T-ALL primary samples. Small-molecule PIM inhibitor (PIMi) treatment decreases leukemia burden in ETP-ALL. However, treatment of animals carrying ETP-ALL with PIMi was not curative. To model other pathways that could be targeted to complement PIMi activity, HSB-2 cells, previously characterized as a PIMi-sensitive T-ALL cell line, were grown in increasing doses of PIMi. Gene set enrichment analysis of RNA sequencing data and functiona.
Maximal safe resection of malignant tissue is associated with improved progression-free survival and better response to radiation and chemotherapy for patients with glioblastoma (GBM). 5-Aminolevulinic acid (5-ALA) is the current FDA-approved standard for intraoperative brain tumor visualization. Unfortunately, autofluorescence in diffuse areas and high fluorescence in dense tissues significantly limit discrimination at tumor margins. This study is the first to compare 5-ALA to an investigational new drug, panitumumab-IRDye800CW, in the same animal model. A patient-derived GBM xenograft model was established in 16 nude mice, which later received injections of 5-ALA, panitumumab-IRDye800CW, IRDye800CW, 5-ALA and IRDye800CW, or 5-ALA and pani.
First-generation antibody–drug conjugates (ADC) are heterogeneous mixtures that have shown clinical benefit, but generally exhibited safety issues and a narrow therapeutic window due, in part, to off-target toxicity caused by ADC instability. ARX788 is a next-generation, site-specific anti-HER2 ADC that utilizes a unique nonnatural amino acid–enabled conjugation technology and a noncleavable Amberstatin (AS269) drug-linker to generate a homogeneous ADC with a drug-to-antibody ratio of 1.9. ARX788 exhibits high serum stability in mice and a relatively long ADC half-life of 12.5 days. When compared in vitro against T-DM1 across a panel of cancer cell lines, ARX788 showed superior activity in the lower HER2-expressing cell lines and no activit.
Tipifarnib is a potent and highly selective inhibitor of farnesyltransferase (FTase). FTase catalyzes the posttranslational attachment of farnesyl groups to signaling proteins that are required for localization to cell membranes. Although all RAS isoforms are FTase substrates, only HRAS is exclusively dependent upon farnesylation, raising the possibility that HRAS-mutant tumors might be susceptible to tipifarnib-mediated inhibition of FTase. Here, we report the characterization of tipifarnib activity in a wide panel of HRAS -mutant and wild-type head and neck squamous cell carcinoma (HNSCC) xenograft models. Tipifarnib treatment displaced both mutant and wild-type HRAS from membranes but only inhibited proliferation, survival, and spheroid
Antibody–drug conjugates (ADC) are targeted agents that have shown promise in treating cancer. A central challenge in development of ADCs is the relatively narrow therapeutic index observed in clinical studies. Patient selection strategies based on expression of the target in tumors have the potential to maximize benefit and provide the best chance of clinical success; however, implementation of biomarker-driven trials can be difficult both practically and scientifically. We conducted a survey of recent clinical experience from early-phase ADC trials completed between 2000 and 2019 to evaluate the different approaches to patient selection currently being used and assess whether there is evidence that target expression is associated with cli.
Mitotane causes hypercholesterolemia in patients with adrenocortical carcinoma (ACC). We suppose that cholesterol increases within the tumor and can be used to activate proliferative pathways. In this study, we used statins to decrease intratumor cholesterol and investigated the effects on ACC growth related to estrogen receptor α (ERα) action at the nuclear and mitochondrial levels. We first used microarray to investigate mitotane effect on genes involved in cholesterol homeostasis and evaluated their relationship with patients' survival in ACC TCGA. We then blocked cholesterol synthesis with simvastatin and determined the effects on H295R cell proliferation, estradiol production, and ERα activity in vitro and in xenograft tumors. We found.
Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-
Abnormal activity of human prolactin (PRL) and its membrane-associated receptor (PRLR) contributes to the progression of uterine carcinoma. However, the underlying mechanisms are not well understood, and current means of targeting the PRL/PRLR axis in uterine cancer are limited. Our integrated analyses using The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases demonstrated that a short form of PRLR (PRLR_SF) is the isoform predominantly expressed in human uterine cancers; expression of this PRLR_SF was elevated in uterine cancers in comparison with cancer-free uterine tissues. We hypothesized that the overexpression of PRLR_SF in uterine cancer cells contributes, in part, to the oncogenic activity of the PRL/PRLR axis. Ne.
We previously reported that silencing of the PRR gene, which encodes the (pro)renin receptor [℗RR], significantly reduced Wnt/β-catenin–dependent development of pancreatic ductal adenocarcinoma (PDAC). Here, we examined the effects of a panel of blocking mAbs directed against the ℗RR extracellular domain on proliferation of the human PDAC cell lines PK-1 and PANC-1 in vitro and in vivo . We observed that four rat anti-℗RR mAbs induced accumulation of cells in the G 0 –G 1 -phase of the cell cycle and significantly reduced proliferation in vitro concomitant with an attenuation of Wnt/β-catenin signaling. Systemic administration of the anti-℗RR mAbs to nude mice bearing subcutaneous PK-1 xenografts significantly decreased tumor expression of
Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell–dependent cellular cytotoxicity
Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma with a proclivity for systemic dissemination, leading many patients to present with advanced stage disease and fail available treatments. There is a notable lack of targeted therapies for NPC, despite working knowledge of multiple proteins with integral roles in NPC cancer biology. These proteins include EZH2, Snail, eIF4E, and IMPDH, which are all overexpressed in NPC and correlated with poor prognosis. These proteins are known to be modulated by ribavirin, an FDA-approved hepatitis C antiviral that has recently been repurposed as a promising therapeutic in several solid and hematologic malignancies. Here, we investigated the potential of ribavirin as a targeted anticancer agent i.
Antibody–drug conjugates (ADC) containing pyrrolobenzodiazepine (PBD) dimers are being evaluated clinically in both hematologic and solid tumors. These include ADCT-301 (camidanlumab tesirine) and ADCT-402 (loncastuximab tesirine) in pivotal phase II trials that contain the payload tesirine, which releases the PBD dimer warhead SG3199. An important consideration in future clinical development is acquired resistance. The aim was to generate and characterize PBD acquired resistant cell lines in both hematologic and solid tumor settings. Human Karpas-299 (ALCL) and NCI-N87 (gastric cancer) cells were incubated with increasing IC 50 doses of ADC (targeting CD25 and HER2, respectively) or SG3199 in a pulsed manner until stable acquired resistanc.
Trastuzumab and the related ADC, ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2 + breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due, in part, to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site specifically conjugated to maytansin.
Conventional antibody–drug conjugates (ADC) utilize native surface-exposed lysines or cysteines on the antibody of interest to conjugate cytotoxic payload. The nonspecific conjugation results in a mixture with variable drug-to-antibody ratios (DAR), conjugation sites, and ADCs that are often unstable in systemic circulation. ARX788 is an ADC consisting of a HER2-targeting antibody site-specifically conjugated with a potent antitubulin cytotoxic drug-linker, AS269. The site-specific conjugation is achieved by first incorporating the nonnatural amino acid, para -acetyl phenylalanine (pAF), into the antibody, followed by covalent conjugation of AS269 to the pAF to form a highly stable oxime bond resulting in a DAR 2 ADC. ARX788 exhibits signif.
Focal adhesion kinase (FAK) promotes cancer cell growth and metastasis. We previously reported that FAK inhibition by the selective inhibitor VS-4718 exerted antileukemia activities in acute myeloid leukemia (AML). The mechanisms involved, and whether VS-4718 potentiates efficacy of other therapeutic agents, have not been investigated. Resistance to apoptosis inducted by the BCL-2 inhibitor ABT-199 (venetoclax) in AML is mediated by preexisting and ABT-199–induced overexpression of MCL-1 and BCL-XL. We observed that VS-4718 or silencing FAK with siRNA decreased MCL-1 and BCL-XL levels. Importantly, VS-4718 antagonized ABT-199–induced MCL-1 and BCL-XL. VS-4718 markedly synergized with ABT-199 to induce apoptosis in AML cells, including prima.

Financial Services

Business Issues

Companies - Public

Companies - Venture Funded

Financial Results

Global Markets

Global Risk Factors

Government Agencies

Information Technologies

Job Titles

Legal and Regulatory

Political Entities


Strategic Scenarios



  • Actions
    • Bookmark and Share: Allows you to Bookmark the page for easy future retrieval and sharing with colleagues
    • Email: Opens a pop-up window where you can write a message to the recipient of the email
    • Copy URL: Copies the URL of the requested document for pasting in an email or other document
    • Previous Versions: Only shown if essentially the same document has been republished
  • Saved Searches and Alerts
    • Save your search for later viewing & updates by clicking the blue "Save" button to the right of the search box. 

Click here for more info on Search Results.